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a b s t r a c t

Fuzzy PID controllers have been developed and applied to many fields for over a period of 30 years. How-
ever, there is no systematic method to design membership functions (MFs) for inputs and outputs of a
fuzzy system. Then optimizing the MFs is considered as a system identification problem for a nonlinear
dynamic system which makes control challenges. This paper presents a novel online method using a
robust extended Kalman filter to optimize a Mamdani fuzzy PID controller. The robust extended Kalman
filter (REKF) is used to adjust the controller parameters automatically during the operation process of any
system applying the controller to minimize the control error. The fuzzy PID controller is tuned about the
shape of MFs and rules to adapt with the working conditions and the control performance is improved
significantly. The proposed method in this research is verified by its application to the force control prob-
lem of an electro-hydraulic actuator. Simulations and experimental results show that proposed method is
effective for the online optimization of the fuzzy PID controller.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction Hence, the typical fuzzy PID controllers cannot adapt for a wide
Nowadays, conventional proportional-integral-derivative (PID)
controllers are commonly used in industry due to their simplicity,
clear functionality and ease of implementation. Meanwhile, fuzzy
control, an intelligent control method imitating the logical thinking
of human and being independent on accurate mathematical model
of the controlled object, can overcome some shortcomings of the
traditional PID. But the fuzzy is a nonlinear control and the output
of the controller has the static error [1]. The reason is that when
the fuzzy input value is in the stable area defined by a membership
function, the fuzzy control output is same which is near or reaches
zero command. Then fuzzy PID control which combines the tradi-
tional PID control and the fuzzy control algorithm is a solution
[2–5]. Fuzzy PID control technique has been applied to many suc-
cessful applications to a variety of consumer products and indus-
trial systems such as position control of slider crank mechanisms
[2], position control of shape memory alloy actuator [3], and speed
control for high performance brushless servo drives [4], etc. How-
ever, the fuzzy PID controllers proposed in these reaches are exper-
imentally designed based on working conditions of the control
systems and their dynamic responses. Consequently, the design
of fuzzy rules depends largely on the experience of experts. There
is no systematic method to design and examine the number of
rules, input space partitions and membership functions [6,7].
ll rights reserved.
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range of working environments with large variation of perturba-
tions [13]. As a result, another control technique such as robust
control, intelligent theory, or estimation methods is needed to
combine with the fuzzy PID to overcome this weakness [8–13].
By using these advanced techniques, the parameters of the fuzzy
PID controller will be adjusted about the shape and position of
the input/output MFs to minimize the control error. And Kalman
estimation technique is an effective solution for controller training
purpose.

Kalman filter is a powerful mathematical tool for stochastic
estimation from noisy sensor measurements [14–16]. It makes an
approximation of the system states, called the priori estimate,
which is used to predict the measurement that is about to arrive.
It recursively conditions the current estimate on all of the past
measurements, and generally converges in a few iterations. A Kal-
man filter that linearizes about the current mean and covariance is
referred to as an extended Kalman filter (EKF) which has been
widely applied in many engineering fields and control system de-
signs. However, the conventional Kalman filters are just accurate
for problems with small nonlinearities and nearly Gaussian noise
statistic. Meanwhile, most physical systems contain large nonlin-
earities and uncertainties. Moreover, the noise in the measure-
ments is a combination of errors coming from many different
sources and generally does not have a Gaussian distribution. Then
they can perform very badly due so-called wrong measurements. It
is therefore a challenge to find a robust filter, which is able to de-
tect the wrong measurements and to handle them accordingly
[17–29]. Finally, the robust filter is applied to optimization purpose
of the fuzzy PID controller.
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Fig. 1. The configuration of fuzzy PID control block.
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In order to solve the above control problems, this paper pro-
poses an online tuning fuzzy PID based on a robust extended Kal-
man filter (REKF) to get better control performance with higher
stability. The REKF is a combination of an extended Kalman filter
(EKF) and the results in [23–25] which are used to robustify the
EKF. Here, a set of the fuzzy PID parameters is similar to a state
vector which represents the control ability. Once this vector de-
signed for the system fits completely with the working condition,
the performance error becomes zero. In other words, the control
system error is caused by the weakness in controller ability and
also the environment noise. If the optimization process of the fuzzy
PID controller is consider as a filter, then the set of ideal state vec-
tors for the controller is as a process model while the set of state
vectors used to control the system is as a measurement model.
Consequently, the different between the process and the measure-
ment models, measurement error, is related to the control system
error. Therefore, the task of the REKF is to directly estimate the
ideal state vector of the fuzzy PID controller for the next step based
on the current control error, the current state vector, and previous
information. Then the MFs and fuzzy rules are updated online to-
gether to minimize the system error function. Consequently, the
fuzzy PID inference has higher learning ability and the control
qualities are improved significantly even in the case of complicated
system and disturbance environment. To verify the overall pro-
posed control system with its advantages, a co-simulation between
AMESim [30] and Matlab/Simulink, and also real-time experiments
are carried out for a special case like force control of an electro-
hydraulic system. Simulation and experimental results show the
effectiveness of the hybrid actuator using proposed control method
to reach the force control target.

The remainder of this paper is organized as follows: Section 2 is
the procedure of designing a robust controller and Section 3 pre-
sents the simulation and experimental results. Concluding remarks
are presented in Section 4.
2. Robust controller design

2.1. Fuzzy pid controller analysis

In this research, the control problem is considered for systems
which have single control input and single output. It is known that,
PID controller is the most widely used in modern industry due to
its simple control structure and easy design. The control signal
for a system using a conventional PID controller can be expressed
in the time domain as:

uPIDðtÞ ¼ KpeðtÞ þ Ki

Z t

0
eðtÞdt þ Kd

deðtÞ
dt

ð1Þ

where e(t) is the error between desired set point and the system
output, de(t) is the derivation of error e(t), uPID(t) is the control sig-
nal for the system and Kp, Ki, and Kd are the proportional gain, inte-
gral gain, and the derivative gain, respectively.

But the conventional PID controllers do not yield reasonable
performance over a wide range of operating conditions because
of the fixed gains used. That is the reason why another control
technique needs to be used to tune the parameters of the PID con-
troller. And fuzzy logic is one of the effective solutions.

From (1), three coefficients Kp, Ki and Kd need to be tuned by
using fuzzy tuners. Therefore, the detailed fuzzy PID scheme is
clearly shown as in Fig. 1.

Through fuzzy logic knowledge, the fuzzy PID tuners which
tune PID parameters (Kp,Ki,Kd) can be established by using the fol-
lowing equation:

Ka ¼ Ka0 þ UaDKa; Ua 2 ½0;1�; a is p; i or d ð2Þ
where Ua is the parameter obtained from the output of the tuning
fuzzy controllers, DKa = Ka1–Ka0 is the allowable deviation of Ka.
Ka0, Ka1 are the minimum and maximum values of Ka determined
from experiments, respectively.

From (2) and Fig. 1, three coefficients Kp, Ki and Kd are tuned by
using the three independent fuzzy tuners. Consequently, the three
separate fuzzy P, I and D controllers are combined to form the
overall fuzzy PID controller.

There are two inputs to the fuzzy controllers: absolute error
|e(t)| and absolute derivative of error |de(t)|. The ranges of these in-
puts are from 0 to 1, which are obtained from the absolute values
of system error and its derivative through scale factors chosen
from the specification of the nonlinear system. For each input vari-
ables, triangle membership functions (MFs) are requested to use.
Because all of the MFs are triangle shapes, so we can express these
MFs as follows:

fjiðxÞ ¼

1þ ðx�ajiÞ
b�ji

if ð�b�ji Þ � ðx� ajiÞ � 0

1� ðx�ajiÞ
bþji

if 0 � ðx� ajiÞ � ðbþji Þ; j ¼ 1;2; . . . ;N

0 otherwise

8>>><
>>>:

ð3Þ

where x is the input; the aji; b
�
ji and bþji are the centroid, left half-

width, and right half-width of the jth triangle membership function
of the ith input, respectively. N is the numbers of triangles.

Each of the fuzzy P, I and D controllers has one output which is
Up, Ui and Ud, respectively. In practice, fuzzy control is applied
using local inferences. That means each rule is inferred and the re-
sults of the inferences of individual rules are then aggregated. The
most common inference methods are: the max-min method, the
max-product method and the sum-product method, where the
aggregation operator is denoted by either max or sum, and the fuz-
zy implication operator is denoted by either min or prod. Especially
the max–min calculus of fuzzy relations offers a computationally
nice and expressive setting for constraint propagation. Finally, a
defuzzification method is needed to obtain a crisp output from
the aggregated fuzzy result. Popular defuzzification methods in-
clude maximum matching and centroid defuzzification. The cen-
troid defuzzification is widely used for fuzzy control problems
where a crisp output is needed, and maximum matching is often
used for pattern matching problems where we need to know the
output class. Hence in this study, the fuzzy reasoning results of
outputs are gained by aggregation operation of fuzzy sets of inputs
and designed fuzzy rules, where max-min aggregation method and
centroid defuzzification method are used. In the proposed fuzzy
controller, we can compute the control output Up, Ui or Ud with a
pair of inputs:
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Ua ¼
PM

k¼1mf ðwkÞwkPM
k¼1mf ðwkÞ

; ða is p; i or dÞ ð4Þ

where wk is the weight of the control output (the centroid of the kth
output fuzzy MF), M is the number of fuzzy output sets and mf(wk)
is the fuzzy output function given by

mf ðwÞ ¼
X

i;j

mfijðwÞ ð5Þ

where mfij(w) is defined as the consequent fuzzy output function
when the first and the second input are in the i and the j class,
respectively

mfijðwÞ ¼ dijlij ð6Þ

where dij is a activated factor, which is active when the input |e(t)| is
in class i, and the input |de(t)| is in class j and lij is the height of the
consequent fuzzy function obtained from the input class i and j

lij ¼min½fi1ðjeðtÞjÞ; f j2ðjdeðtÞjÞ� ð7Þ

The output Ua of the tuning fuzzy controller contains single out-
put values. They are initially set at the same intervals.

Generally, the fuzzy rules are dependent on the plant to be con-
trolled and the type of the controller. These rules are determined
from the intuition or practical experience. However, there is no
systematic method to design and examine the number of rules, in-
put space partitions and MFs. Furthermore, the fuzzy system lacks
of the learning ability and adaptive capability, especially in case
that the controlled object contains nonlinearities, large uncertain-
ties and noised environment.

Therefore, an adaptive technique is needed to be combined with
the traditional fuzzy PID controller to perform a new robust con-
troller. As a result, an online tuning fuzzy PID controller based a ro-
bust extended Kalman filter is one solution to achieve the better
control performance. Consider an error function given by

E ¼ 1
2
ðy� yrÞ

2 ð8Þ

where yr and y are the reference input for control task of the system
(or named the target value) and the system output, respectively.

The control purpose is how to minimize the error function with
respect to the fuzzy MF parameters. As mention above, the fuzzy
PID controller is optimized by using Kalman estimation technique.
The idea of the proposed controller is using a robust extended Kal-
man filter to tune the input MFs shape and the weight of the con-
troller outputs during the system operation process. Then, the
decisive factors of the fuzzy input MFs aj; b

�
j ; b

þ
j and the weights

of the output wj are automatically updated by using REKF. This no-
vel method is described in details as following sections.

2.2. Extended Kalman filter (EKF)

This section presents the EKF algorithm. The state of the system
at time tk (k=1,2, . . .) is modeled as a stochastic variable xk. The evo-
lution of the state in time is expressed by a stochastic different
equation

xkþ1 ¼ gkðxk; qkÞ
qk � Nð0;Q kÞ

ð9Þ

and the measurement vector yk are related to the system state by\

ykþ1 ¼ hkðxk; vkÞ
vk � Nð0;RkÞ

ð10Þ

where g(�) and h(�) are nonlinear vector functions of the state; qk

and vk represent the process and measurement noise, respectively.
Qk is the process noise covariance, and Rk is the measurement noise
covariance.
Assume that the initial state x0 and the noises qk and vk are
white zero-mean, Gaussian and independent from each other with

Eðx0Þ ¼ �x0

E½ðx0 � �x0Þðx0 � �x0ÞT � ¼ P0

EðqiÞ ¼ 0
Eðqiq

T
j Þ ¼ Qdij

Eðv iÞ ¼ 0
Eðv ivT

j Þ ¼ Rdij

8>>>>>>>>><
>>>>>>>>>:

ð11Þ

where E(�) is expectation operator; dij is the Kronecker delta given
by

dij ¼
0; i – j

1; i ¼ j

�
ð12Þ

The EKF is an approximate analytic solution if consider that the
noises qk and vk are additive Gaussian noise sequences. The state
and the measurement functions are linearized according to

Gk ¼
@gkðxkÞ
@xk

jxk¼x̂�
k
; Hk ¼

@hkðxkÞ
@xk

jxk¼x̂�
k

ð13Þ

where consider x̂�k and x̂k are the prior and posterior mean esti-
mates at time step tk. Then, the system model can be approximated
as

xkþ1 ¼ Gkxk þ qk

yk ¼ Hkxk þ vk
ð14Þ

The prior density is now Gaussian with mean and covariance as
followings

Eðxkjy1 . . . yk�1Þ ¼ x̂�k ¼ Gkx̂k�1

Vðxkjy1 . . . yk�1Þ ¼ P�k ¼ GkPk�1GT
k þ Qk

ð15Þ

The posterior density is now Gaussian with mean and covari-
ance computed as

Eðxkjy1 . . . ykÞ ¼ x̂k ¼ x̂�k þ Kkðzk � Hkx̂�k Þ
Vðxkjy1 . . . ykÞ ¼ Pk ¼ ðI � KkHkÞP�k

ð16Þ

where Kk is the Kalman gain matrix

Kk ¼ P�k HT
kðHkP�k HT

k þ RkÞ�1 ð17Þ
2.3. Robust extended Kalman filter (REKF)

In Section 2.2, the EKF algorithm is based on the assumption
that the process noise and measurement noise are nearly Gaussian
distribution. As a result, in most physical systems, and in the work-
ing environment, the large number of uncertainties and nonlinear-
ities can cause the controller based on the EKF with the strict
assumption of Gaussian noises to lose in efficiency. To solve the
above problem, an asymptotically min-max robust estimation
technique is combined with the EKF to perform a robust extended
Kalman filter.

For a simple problem of estimating location, appropriate
choices for the nonlinear transformation and gain constant of the
algorithm lead to an asymptotically min–max robust estimator
with respect to a family F(yp, p) of symmetrical distributions hav-
ing the same mass p outside [�yp,yp], 0 < p < 1. From [24], one type
of the recursive stochastic approximation (SA), referred to as the p-
point estimator (PPE), is proposed. This estimator has the addi-
tional striking property that the asymptotic variance is constant
over the family F(yp,p). Consequently, the PPE estimator in [24]
was applied to robustify the extended Kalman filter [23]. Based
on the PPE estimator [24] and the REKF with the robust Bayesian
estimation [23], this paper proposed the use of the REKF to opti-
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mize online the characteristic parameters of the fuzzy PID control-
ler with respect to the varied working environment of the control
system. The followings present the REKF in details.

2.3.1. p-Point estimator
Consider a family of distribution F

Fðcp; pÞ ¼ Fð:Þ
Z �yp

�1
FðhÞdh

���� � Fð�cpÞ ¼ p=2 ¼ Uð�cpÞ; cp > 0;
�

0 < p < 1; Fð:Þ symmetric & continous at � cp

o
ð18Þ

where U(�) is the standard normal cumulative distribution function.
Let T be the family of all regular translation invariant estima-

tors T. Denote the asymptotic variance of the estimator when the
sample size tends to infinitive by VðT; FÞ; T 2T; F 2Fðcp; pÞ:There-
fore, there exits a min-max solution (T0, F0) ðF0 2Fðcp; pÞ
and T0 2TÞ such that

supFVðT0; FÞ ¼ VðT0; F0Þ ¼ infT VðT; F0Þ ð19Þ

where the supremum is over all F e F(cp,p) and the infimum is over
all T e T

F0: The least favorable distribution of class F.
T0: The min–max robust estimator which is actually the maxi-
mum likelihood estimator for the least favorable density F0.

The least favorable density F0 is explicitly given in term of its
density function by

f0ðcÞ ¼
K cos2 c

2smcp

� �
; jcj � cp

K cos2 1
2sm

� �
exp½�2Kp�1 cos2 1

2sm

� �
ðjcj � cpÞ; jcj > cp

8><
>:

ð20Þ

where K is defined by

K ¼ 1� p

cp 1þ sm sin 1
sm

� �h i ð21Þ

For each p there exists an s = sm that minimizes the asymptotic var-
iance and sm does not depend upon yp. The minimizing value sm sat-
isfies the following equation

2sm � p 1þ tan2 1
2sm

� �� 	
2sm þ tan

1
2sm

� �� 	
¼ 0 ð22Þ

From (20)–(22), the likelihood score of the least favorable density F0

of the PPE Fp is computed as

sMðcÞ ¼
f 00ðcÞ
f0ðcÞ

¼
� 1

smcp
tan c

2smcp

� �
; jcj � cp

� 1
smcp

tan 1
2sm

� �
signðcpÞ; jcj > cp

8><
>: ð23Þ
2.3.2. Robustifying Kalman filter
The PPE was applied to the EKF algorithm to perform the robust

extended Kalman filter [23]. From the normal vector observation
model in (14), consider an innovation transformed version of the
measurement model in (14)

zk ¼ H	kxk þ v	k
ck ¼ zk � H	kx̂�k

�
ð24Þ

with

zk ¼ Tkyk

H	k ¼ TkHk

v	k ¼ Tkvk

8><
>: ð25Þ
where Tk is a transformation matrix which is determined below.
From (16) and (17), the posterior can be re-written as

Eðxkjy1 . . . ykÞ ¼ x̂k ¼ x̂�k þ P�k HT
kðHkP�k HT

k þ RkÞ�1ðzk � Hkx̂�k Þ ð26Þ

The transformation matrix is chosen as

Tk ¼ ðHkP�k HT
k þ RkÞ�1=2

ðTT
k Tk ¼ ðHkP�k HT

k þ RkÞ�1Þ
ð27Þ

Replace the transformation matrix (27) into (26), we obtain

Eðxkjy1 . . . ykÞ ¼ x̂k ¼ x̂�k þ P�k HT
k TT

k Tkðzk � Hkx̂�k Þ ð28Þ

In addition, because the transformation matrix is a standard
normal distribution, apply the PPE (Section 2.3.1) into the EKF. If
p(ck|c1. . .ck�1) is the least favorable density of the PPE Fp then
the posterior mean and posterior covariance in (16) are now mod-
ified as following equations. First, the posterior mean in (28) is
computed

Eðxkjy1 . . . ykÞ ¼ x̂k ¼ x̂�k þ P�k HT
k TT

kwðckÞ ð29Þ

where w(ck) is the odd symmetric scalar influence function corre-
sponding to the min–max estimate for distribution function F, and
w(ck) is defined as

wðckÞ ¼ �r ln pðckjc1::ck�1Þjck
¼

1
smcp

tan c
2smcp

� �
jcj � cp

1
smcp

tan 1
2sm

� �
signðcpÞ; jcj > cp

8><
>:

ð30Þ

where the factor ck ¼ Tkðzk � Hkx̂�k Þ
Next, the posterior covariance is given by

Vðxkjy1 . . . ykÞ ¼ Pk ¼ ½I � ðP�k HT
k TT

k TkÞHkEF0 ðw
0ðckÞÞ�P

�
k

¼ ½I � KkHkEF0 ðw
0ðckÞÞ�P

�
k ð31Þ

where the factor EF0 ðw
0ðckÞÞ is defined by PPE

EF0 ðw
0ðckÞÞ ¼ ðsmcpÞ

�2 1� p 1þ tan2 1
2sm

� �� �� 	
ð32Þ
2.4. Application of the robust extended Kalman filter to optimize the
fuzzy PID controller

In this section, the REKF presented in the previous section is
used for training the MF parameters of fuzzy inputs aj; b

�
j ; b

þ
j and

the weights of the output wj. The overall structure of the online
tuning fuzzy PID controller based a robust extended Kalman filter
is shown in Fig. 2.

The optimization of fuzzy controller is known as a weighted
least square minimization problem, where the error is the differ-
ence between the system output and the target value for that out-
put. The fuzzy PID controller for a nonlinear system contains the
three separate fuzzy P, I and D as presented in Section 2.1. Each
of the fuzzy controller (P or I or D) have the two inputs (|e(t)|, an-
d|de(t)|) and one output (kp or ki or kd); and the REKF will tune on-
line each of the fuzzy controller separately. For the training
purpose, the state vector of the nonlinear system can be repre-
sented as

x ¼ xP xI xD½ �T ð33Þ

where each of element of the state vector x is a characteristic vector
as given

xðP=I=DÞk

¼ a11 b�11 bþ11 . . . an1 b�n1 bþn1 a12 b�12 bþ12 . . . am2 b�m2 bþm2 w1 . . . wv

 �

k

ð34Þ



Fig. 2. Structure of the proposed control mechanism applied to a nonlinear system.
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where aji; b
�
ji and bþji are the centroid, left half-width, and right half-

width of the jth triangle MF of the ith input (which has n fuzzy sets
if it is the first input or has m fuzzy sets if it is the second input); wk

is the weight of the control output (the centroid of the kth output
fuzzy MF, number of weights is v).

Next, z is used to denote the vector of real system output, and h
is used to denote the target vector for the system output. The non-
linear system model to which the REKF can be applied is expressed

xkþ1 ¼ xk þ qk

yk ¼ hðxkÞ þ vk
ð35Þ

From (35), h(xk) is the mapping fuzzy PID controller function which
represents the system output with respect to a set of the fuzzy
parameters. In addition, the process noises, qk and vk, are added into
the system model to avoid numerical divergence of the algorithm
and poor local minima problems.

The initial estimation vector at t = 0 is x̂�0 : Furthermore, because
of this prior knowledge about the process, the error associated
with our initial estimate is zero. Thus,

P̂�0 ¼ 0 ð36Þ

By using the REKF presented in Sections 2.2 and 2.3 in which Qk,
the tuning fuzzy parameter matrix, is a diagonal covariance matrix

Qk ¼ cov qp qI qD


 �T
0::k

ð37Þ

where each of element of the state vector Qk is a characteristic vec-
tor as given

qðP=I=DÞ0::k

¼ q11 q�11 qþ11 . . . qþn1 q12 . . . qm2 q�m2 qþm2 q1 . . . qv

 �

0::k

ð38Þ

The ‘‘robust extended Kalman filter” block in Fig. 2 for tuning
the fuzzy PID parameters can be expressed as in Fig. 3. For this
case, the measurement functions in (13) can be computed by using
partial derivatives of the system output with respect to each
parameter of fuzzy PID controller: a, b�, b+, and wk and then replace
them into equations of the REKF (Section 2.3) to update the con-
troller. For the step k of time

Hk ¼
@hkðxkÞ
@xk

����
xk¼x̂�

k

Firstly, the partial derivative of the system output with respect
to the weight of each fuzzy out MF is given

@hkðwiÞ
@wi

� @y
@wi
¼ @y
@uPID

@uPID

@Ua

@Ua

@wi
ð39Þ

where

@y
@uPID

¼ Dy
DuPID

¼ yðtÞ � yðt � 1Þ
uPIDðtÞ � uPIDðt � 1Þ ð40Þ

@uPID

@Ua
:

@uPID
@Up
¼ DKpeðtÞ

@uPID
@Ui
¼ DKi

R
eðtÞdt

@uPID
@Ud
¼ DKddeðtÞ

8>><
>>: ð41Þ

@Ua

@wi
¼ mf ðwiÞPM

k¼1mf ðwkÞ
ð42Þ
Secondly, the partial derivative of the system output with re-
spect to the center of each input MF can be computed by

@hkðaiÞ
@ai

� @y
@ai
¼ @y
@Ua

@Ua

@li

@li

@ai
¼ @y
@uPID

@uPID

@Ua

@Ua

@mf ðwiÞ
@mf ðwiÞ
@ai

ð43Þ

where @y
@uPID

; and @uPID
@Ua

is calculated by using (40) and (41),
respectively.

@Ua

@mf ðwiÞ
¼
PM

k¼1mf ðwkÞðwi �wkÞPM
k¼1mf ðwkÞ

� �2 ð44Þ

@mf ðwiÞ
@ai

¼

�1
b�i

if ð�b�i Þ � ðx� aiÞ � 0
1

bþi
if 0 � ðx� aiÞ � ðbþi Þ

0 otherwise

8>><
>>: ð45Þ

Thirdly, the partial derivative of the system output with respect
to the half widths of each input MF can be computed by

@hkðbþ=�i Þ
@bþ=�i

� @y

@bþ=�i

¼ @y
@Ua

@Ua

@mf ðwiÞ
@mf ðwiÞ
@bþ=�i

ð46Þ

where @y
@Ua

and @Ua
@mf ðwiÞ

is calculated by using 40, 41, and 44.

@mf ðwiÞ
@bþ=�i

¼

� ðx�aiÞ
ðb�i Þ

2 if ð�b�i Þ � ðx� aiÞ � 0

ðx�aiÞ
ðbþi Þ

2 if 0 � ðx� aiÞ � ðbþi Þ

0 otherwise

8>>><
>>>:

ð47Þ

After get the measurement functions in (13), the fuzzy PID con-
troller is automatically updated by applying the robust estimator
as in Fig. 3.

However, for each separate fuzzy controller (P, or I, or D) with
the same two inputs and single output, the more membership
functions and rules are, the larger the number components of REKF
state vector (33) is. Then the REKF is very complex because of
many big size matrixes (such as P, Q) performed from the large
state vector x. It causes the calculation time for updating the fuzzy
PID parameters to increase so much. This is a big problem for
applying the REKF to tune online the fuzzy PID controller.

To solve this problem, the number components of the Kalman
state vector needs to be reduced. Firstly, the operation of the fuzzy
controller is considered. Each of the fuzzy input/output variables is
represented by the MFs which make the overlap input partitions.
Hence, for each of the fuzzy input variables (|e(t)| or |de(t)|), any va-
lue of it will drop commonly into the input partition spaces of MFs
of which maximum are two MFs. It is called two active MFs. In
addition, one fuzzy rule is designed for a couple of two input
MFs which respect to two values of the two input variables. There-
fore, for a couple values of the two input variables (|e(t)| and
|de(t)|), the maximum number of active input MFs as same as ac-
tive rules, which are used to calculate the output, is only four while
another MFs and another rules are not used. Then, the REKF calcu-
lations will be used to update the parameters for only four active
MFs and four active rules with respect to the system error function.
Moreover, each membership function has two parameters,



Fig. 3. Internal components of ‘‘robust extended Kalman filter” block.
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a; b�ðorbþÞ; and each rule have one parameter, wk, need to be
tuned. Consequently, the size of the representative state vector
for each separate fuzzy P, I, or D controller is now shortened

A state vector size ¼ 4
 ð3 tuned fuzzy parametersÞ
¼ 12ðelementsÞ

From the above analysis, the REKF now can be re-written by a
reduced form in which the state vector (33) and (34) is only a vec-
tor of the all active MF parameters. In other words, the size of state
Fig. 4. AMESim model of
vector for each separate P, I, or D controller is only twelve elements
for updating four active MFs. Consequently, the state vector of non-
linear system is given as

x	 ¼ x	P x	I x	D½ �T ð48Þ

where each of element of the state vector x* is a characteristic vector
of the four active MFs (two of the first input, and two of the second
input), and four active rules (composed from the active MFs) as
given
the hybrid actuator.
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x	ðP=I=DÞk ¼
a	11 b	�11 ðb

	þ
11 Þ a	21 b	�21 ðb

	þ
21 Þ a	12 b	�12 ðb

	þ
12 Þ

a	22 b	�22 ðb
	þ
22 Þ w	1 w	2 w	3 w	4

" #
k

ð49Þ

Next, all of the calculations from (35)–(47) are derived into the
reduced forms based on (48) and (49) and then are used to opti-
Fig. 5. Simulation model of hybr

Table 1
Setting parameters for AMESim – Electro-hydraulic actuator model.

System parameters Value

AC servo motor 200
2.9
18.6

Pump 2500
15

Cylinder parameters 63 
 35 
 150
21

Spring – k 519
Relief pressure (bar) 175
Working liquid – Oil 0.87

1.5 
 109

Load – M 1000
Sensor gain 3
mize the controller. This way saves much time for calculation
and control process and then increases the ability of the controller.
With the self tuning ability based on the REKF and then the optimi-
zation the error, the fuzzy PID controller works more and more
effectively. The simulations and experimental results in the next
section will prove for this consideration.
id systems with controllers.

Meaning

Power supply(volts AC)
Power (kW)
Rate torque (Nm)
Speed (rev/min)
Pump displacement (cc/rev)
Piston diameter 
 Rod diameter 
 Length of stroke (mm)
Maximum pressure (MPa)
Environment stiffness (kN/m)
Relief valve cracking pressure
Specific gravity
Bulk modulus (Pa)
Loading environment
Force sensor signal



Table 2
Rules table of online self tuning fuzzy PID controller.

(Up,Ui,Ud) |de(t)|

Z VS S M B

|e(t)| Z (VS,B,M) (VS,B,M) (Z,B,M) (Z,B,B) (Z,B,B)
VS (VS,B,S) (VS,B,M) (VS,B,M) (Z,M,M) (Z,M,B)
S (S,M,VS) (S,M,VS) (S,M,VS) (VS,S,S) (VS,S,S)
M (M,Z,Z) (M,Z,Z) (M,VS,VS) (S,VS,VS) (S,VS,VS)
B (B,Z,Z) (B,Z,Z) (B,Z,Z) (B,Z,Z) (M,Z,Z)
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3. Simulations and experiments

3.1. Simulations

3.1.1. Simulation setup
In this section, simulations were carried out to prove the effec-

tiveness of the designed controller. A co-simulation between AME-
Sim [30] and Simulink is chosen to verify the proposed controller
applied to a hydraulic circuit of an hybrid electro-hydraulic actua-
tor with force control requirement.

The hybrid actuator is a combination of an AC servo motor, a
piston pump, a reservoir and a hydraulic control circuit. The cylin-
der is controlled by the motor and the bidirectional pump to get
the desired performance. In addition, a compression spring is used
as a loading environment and a load cell is used for obtaining the
feedback force signal. The speed of the servo motor is the control
target in this case.

The hydraulic circuit was built in the simulation AMESim soft-
ware, version 4.3 (Imagine S.A., 2005). AMESim corresponds to Ad-
vanced Modeling Environment Simulation software, which allows
the simulation of actuator dynamics including electrical motor,
hydraulic systems through using several libraries. Fig. 4 shows
the AMESim model of the hybrid actuator. AMESim generates C-
files for the actuator model and creates a DLL file for the model.
The DLL is then used in the simulation model via Simulink by asso-
ciating with a S-Function block. The AMESim model contains one
input (control signal to control the motor) and one output (feed-
back force signal from the load cell) to communicate with the sug-
gested control system built in Simulink, consequently form a
closed-loop feedback control.

Next, Matlab/Simulink is chosen as a common shell for building
the simulation model due to its ability to support and interface
seamlessly with the different DLLs provided from other tools. The
DLL can be included in the Simulink environment in the form of
an S-Function. Fig. 5 shows the system with the controller built
in Simulink.

3.1.2. Simulation results
In this section, by using the above developed co-simulation

platform, the states of the hydraulic system solved in AMESim
are fed into the Simulink controller. The control signals from the
controller are then fed back into the AMESim hydraulic model
and the new states are solved to perform the force control perfor-
Fig. 6. Initial membership functions of the inputs and output of the self tuning P, I,
or D fuzzy.
mance. The setting parameters for the hybrid system model are ob-
tained from the real components of test rig as shown in Table 1.
The simulations were done with a 0.01 s sampling rate, to check
the system responses.

In addition, to prove the effectiveness of the proposed control-
ler, a disturbance scheme was included in the control diagram as
shown in Fig. 5. The disturbance generated in this case, a combina-
tion of a white noise and a sine wave noise, can be expressed as
given

DisðtÞ ¼ A sinðxtÞ þ RndðtÞ ð50Þ
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Fig. 7. Simulation results – Comparison of system responses between using
different controllers with respect to a step force reference.
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where A and x are amplitude and frequency parameters, respec-
tively, and Rnd(t) is the white noise signal.
Fig. 8. Simulation results – Fuzzy PID con
The comparison of a conventional PID controller, a common
fuzzy PID controller, and the proposed online tuning fuzzy PID
troller based the REKF after tuning.
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Fig. 9. Simulation results – Comparison of system responses between using
different controllers with respect to a multi step force reference.
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controller based the REKF applied to the hydraulic system model
were performed as shown in Fig. 5. Three similar hydraulic circuits
representing for the hybrid actuator were built and inserted into
the control system in Simulink. The compared controllers were
Fig. 10. Photograph of hyd
then applied to the three hydraulic circuits, respectively, to make
the comparison of the simulated force responses.

In case of using the proposed controller, the detailed fuzzy PID
based the REKF scheme is clearly described in Section 2 and Figs.
1–3. There are two inputs to the fuzzy controllers: absolute error
|e(t)| and absolute derivative of error |de(t)|.

The ranges of these inputs are from 0 to 1, which are obtained
from the absolute values of system error and its derivative through
the scale factors chosen from the specification of the load simula-
tor. For each input variable, some MFs are used to device overlap
partitions in the variable input range. The more MFs, the more
complex control system and the more computation time are. Based
on design experience obtained from the previous researches
[7,8,13], five triangle MFs are used in this paper for smooth tuning
P, I, and D parameters while it does not require much calculating
time consumption. Here, ‘‘Z”, ‘‘VS”, ‘‘S”, ‘‘M” and ‘‘B” are ‘‘Zero”,
‘‘Very Small”, ‘‘Small”, ‘‘Medium” and ‘‘Big”, respectively. The cen-
troids of the MFs are set at the same intervals and the same shape
sizes initially as in Fig. 6a.

The output Ua of the tuning fuzzy controller has five MFs: ‘‘Z”
(Zero), ‘‘VS” (Very Small), ‘‘S” (Small), ‘‘M” (Medium), and ‘‘B”
(Big). They are initially set at the same intervals as in Fig. 6b.

Based on the above fuzzy sets of the input and output variables,
the fuzzy rules for the online tuning fuzzy PID applied to the
hydraulic system are described in Table 2. From the output of
the three separated fuzzy P, I, and D controllers, the control signal
applied for the system to control the servo motor is computed as
describing in Section 2.1.

Simulations were carried out for checking the control perfor-
mances of the different controllers used for the hydraulic actuator
in case of perturbation working environment. Fig. 7 shows the sim-
ulated step responses of the system in cases of using different con-
trollers. From the results in Fig. 7, the simulated force tracking of
the system using the PID controller (dash line) contained oscilla-
tions due to the disturbance signal added to the force feedback sig-
nal. The performance of system using the fuzzy PID controller (the
dash-dot line in Fig. 7) was a little better than that using the con-
ventional PID controller but also remained oscillations. However,
when using the online tuning fuzzy PID controller based the REKF,
the control quality was the best with a very small steady error
about 0.7% of the desired force level. During the simulation pro-
raulic testing machine.
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Fig. 11. Experimental results – Comparison of system responses between using
different controllers with respect to a step force reference in case of large
disturbance environment.
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cess, the characteristic parameters of the proposed controller were
directly adjusted based on the system error and the set of previous
data of these parameters to reach the control target with high pre-
cision. Fig. 8 is the optimizing results of the fuzzy PID controller
using the REKF to obtain the better control quality as in Fig. 7.

In addition, to compare the simulation control results for differ-
ent set-point forces including noise which is the same condition
with the previous simulation, the tracking for a multi step refer-
ence signal was investigated by simulation. Fig. 9 displays the sim-
ulated output responses of the testing circuits using the PID, the
fuzzy PID, and the REKF fuzzy PID controller in comparison. From
the simulation results, it is obvious that the hybrid hydraulic cir-
cuit using the proposed controller achieved the best tracking force
response with the steady state error coming to zero (less than 0.5%
of the desired force level) while the simulated responses of the sys-
tem using the other controllers existed oscillations. From all the
simulations, the results proved that the system applied the pro-
posed controller has high stability even in case of the working con-
dition containing large perturbation. Consequently, the proposed
control method was applied to the real testing machine in the next
section for real-time checking the force control performance.

3.2. Experiments

3.2.1. Experimental setup
The experimental apparatus is shown in Fig. 10. The system

hardware consists of a hybrid electro-hydraulic actuator, a com-
puter included PCI-bus multifunction cards and another hydraulic
circuit generating disturbances simulating the noises in the hybrid
hydraulic systems. The structure of the hybrid actuator is de-
scribed in Section 3.1.1. A compression spring is used to connect
the hybrid actuator and the disturbance generator. Moreover, a
load cell is used for obtaining the feedback force signal. The setting
parameters for the testing machine are as shown in Table 3.

A compatible PC included two PCI-bus data acquisition & con-
trol cards (Advantech cards, PCI 1711 and PCI 1720) is used to re-
ceive, process feedback signal and generate the output signal to
control the motor of the hybrid actuator and then perform force
control performance.

3.2.2. Experimental results
The ability of the proposed REKF fuzzy PID controller was

shown through simulation results in Section 3.1.1. In this section,
experiments were carried out to prove the effectiveness of the de-
signed controller when applied to the real-time control system, hy-
brid hydraulic testing machine. The working environment included
a large effect of disturbance is applied to verify the tracking perfor-
mance and the robustness of the online tuning REKF fuzzy PID con-
troller in the comparison with the conventional controllers.
Table 3
Setting parameters for the experimental system.

System parameters Parts

Hybrid actuator Disturbance

AC servo motor YASKAWA SGMGH-30PCA21 OTIS-LG FMA
200 200
2.9 2.2
18.6 26.18

Pump 2500 2000
15 10
63 
 35 
 150 55 
 35 
 10
21 21

Spring system 519
Relief pressure (bar) 175
Load cell 5
The online tuning fuzzy PID based REKF control algorithm
which is used to control the testing machine is built by the combi-
nation of Simulink and Real-time Windows Target Toolbox of Mat-
lab and connected to Advantech cards. The sampling time was set
to be 0.01 s for all experiments. Furthermore, to make the chal-
Meaning

generation

-KN55-EB01 Series No.
Power supply(volts AC)
Power (kW)
Rate torque (Nm)
Speed (rev/min)
Pump displacement (cc/rev)

0 Piston diameter 
 Rod diameter 
 Length of stroke (mm)
Maximum pressure (MPa)
Environment stiffness 1 (kN/m)
Relief valve cracking pressure (bar)
Capacity (tonf)
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lenge for the proposed controller, a large disturbance source con-
taining the band-limited white noises and the sine wave noise as
(50) is generated real time during the system operation for all
experiments. The noise signal performed in (50) is sent from the
computer to the AC servo driver of the disturbance generation part
by the DA converter (PCI 1720). Then the AC servo motor (FMA-
KN55) with the hydraulic circuit are used to create the large per-
turbation environment for the hybrid system in testing the force
control performance.

At first, the conventional PID controller is applied to the hybrid
system with step force control target. The force response of the
system in this case is plotted as the dot line in Fig. 11. The result
shows that the system using the conventional PID controller with
fixed gains does not yield reasonable performance over a wide
range of operating conditions. Next, the fuzzy PID controller with-
out online self tuning capability is used to improve the control per-
formance. Consequently, the response in this case displayed as the
dash-dot line in Fig. 11. It shows that the tracking result in case of
using the fuzzy PID is better than in case of the conventional PID.
However, it is clear that the control performance is just improved
slightly and not stable.

Hence, the online tuning fuzzy PID controller based REKF de-
scribed in Section 2 is implemented to overcome the above control
problems. The force response of the system using the proposed
control method with respect to a step force reference is depicted
as the black line in Fig. 11. The comparison of experimental results
in Fig. 11 proves that the response of the system using the pro-
posed controller was more stable than the other controllers and
the performance was significantly improved when the system
worked in the large perturbation environment. Table 4 is an anal-
Table 4
Comparison of system step responses using different controllers.

Controller 2000 N reference force – Large disturbed working environment

Td

(Delay
time – s)

Tr

(Rise
time – s)

Ts

(Settling
time – s)

SSE
(Steady state
error – %)

PID 0.21 0.27 – –
Fuzzy PID 0.16 0.19 – –
REKF fuzzy PID 0.16 0.19 0.35 1
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Fig. 12. Experimental results – Comparison of system responses between using
different controllers with respect to a multi step force reference in case of large
disturbance environment.
ysis of the system responses using the different controllers with re-
spect to a step force reference. From this table, it shows that the
steady state error in case of using the proposed controller was
small as the simulation results while in case of using the other con-
trollers, the system was not stable.

In addition, to compare the ability of the REKF fuzzy PID con-
troller with the conventional controllers for different set-point ref-
erence inputs, the multiple step signals were investigated as
displayed in Fig. 12. It can be seen that the proposed controller
achieves the best tracking response when compared with the other
controllers. It is clear that a good regulation is realized in the case
of using the online tuning fuzzy PID tuners based on the REKF to
design a controller.

4. Conclusions

This paper presents a novel control method – online tuning fuz-
zy PID controller based on a robust extended Kalman filter. The tra-
ditional PID control combined with self tuning fuzzy sets whose
shapes of MFs are tuned online by using REKF algorithm obtains
better performance and higher control precision.

Simulations and experiments were carried out to evaluate the
effectiveness of the proposed control method applied for a specific
case – force control of an electro-hydraulic system even if the
external disturbance varies as the real working environment. The
simulation evaluation and experimental results showed that the
proposed online tuning fuzzy PID controller could achieve good
tracking with respect to different reference input signals and in
case of variation of disturbances. In addition, the proposed control-
ler was compared with the conventional controllers to prove con-
vincingly that the controller designed by fuzzy PID methodology
and REKF technique could satisfy the robust performance require-
ment, tracking performance specification, and disturbance attenu-
ation requirement.
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